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ABSTRACT

This paper discusses network notations for encoding a number of
different kinds of knowledge, including taxonomic information; general
statements involving quantification; information about processes and
procedures; the delineation of local contexts, beliefs, and wishes; and

the relationships between syntactic units and their interpretations.

Many of the encodings appeal o the concept of network
partitioning, in which a large net is partitioned into subnets and

higher-order relationsghips among the subnets are defined.

Procedural mechanisms for constructing and using the various
network formalisms are discussed as equal partners with the declarative

structures.
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I  INTRODUCTION

*

Over the past three years, several systems® have been constructed

in-SRI International's Artificial Intelligence Center that make use of
partitioned network®*® structures as a medium for recording knowledge.
‘These systems perform such diverse tasks as translating natural language
into formal structures, performing logical deduction, doing judgmental
reasoning, reasoning about the structure of data in data bases,
reasoning about processes, interrelating the sentences of a dialogue,
and generating natural language descriptions of information that is
stored in formal structures. This paper looks at the network techniques
used in the various projects from a uniform perspective, deseribing both
the encoding techniques that are common to most of the systems and the

special techniques devised to handle specialized tasks.

*a system for judgmental reasoning is desecribed in [Duda, Hart, Nilsson
cand Sutherland 1977] and in ([Duda, Hart and Reboh 1977]. Systems for
‘deduction, discourse analysis, natural language understanding and
natural language generation are discussed in considerable detail in
[Walker 1978]. By permission from its publisher, some of the examples
and figures of the latier work are reproduced herein.

-3**_A1though I have used the term "semantic network™ in the past, it is
. ‘my ‘intention to avoid ‘its use henceforth. Theé term "semantics" is best
-used to refer to  the relationship between linguistic structures (words,
- phrases, ' senténces,  discourses). .and . their meanings. Because the
networks deseribed here are . used primarily (but not exclusively!) to
encode the knowledge conveyed by language, rather than the relationship
of language to what it conveys, the term "knowledge network" or "K-net"
seems more appropriate.



I1  BACKGROUND AND MOTIVATION

A. WhY'Use Nets

Before plunging into the details of how networks can encode
information, it is worthwhile to reflect on the general reasons for
selecting nets as a representation medium. Their attraction largely
centers around two factors. First, it is believed that the expressive
power of nets is sufficient to encode any fact or concept that is
encodable 1in any other formal, symbolic system. This means that nets
may serve as a common medium of representation for diverse kinds of
knowledge. Second, and this is the point that distinguishes network
structures from other formally complete systems, the network data
structures that encode information may themselves serve as a guide for
information retrieval. From a given node, nodes representing related
entities are found simply by following pointers from the node to its
neighbors. In this way, a network provides its own meaning-bearing
indexing system. To the extent that the labels on arecs and nodes are
meaningful to net-manipulating procedures, they provide guidance to help

traverse the net in search of information relevant to a task.

B. Partners with Nets

The knowledge encoded in a network, being declarative, is somewhat
like that stored in a book: it is available for the support of
intellectual activity only if there exists some outside agent that can
retrieve the knowledge and apply it. This outside agent embodies
knowledge about how to manipulate the information in the net, and may
have access to yet other bodies of information. To the extent that the
information in the network is to be used, the network and its
- manipulator are mutually dependent partners. Therefore, in considering
the network structures prééentéd'below, it is important to consider also

the procedures that manipulate them.



C. Networks as a Medium for Integrating Skills

Just as the knowledge in a Yook may be accessed and applied by
multiple agents, so may the knowledge in a network. In particular,
information in a net may be used by a number of different procedures in
performing a variety of tasks. For example, constraints on set
membership recorded in a network may aid both the process of natural

language understanding and the process of logical deduction.

But a net need not wmerely provide a static repository of
information that is to be shared by multiple processes. Rather, it may
serve as a medium of communication between processes. For example,
natural language translation may create a network description of a
question. A question answerer may then process the question's
description to produce a network-encoded answer, which in turn is the
input to an English generator. All of the intermediate structures may
be examined by discourse analysis procedures that seek to build up a

network-encoded model of an extended dialogue.

The point is that their representational power makes nets
attractive both as a medium for encoding information needed by multiple
skill modules and as a common language for communicating results among
modules. Thus, nets may aid _in two ways in the integration of multiple
intelligence skills,

III  BASIC NETWORK NOTIONS

This section introduces the basic techniques used by our systems to
encode information in networks. The representation builds upon such
work as that reported in {Simmons 19731, [Shapirc 1971] and [Norman,
Rumelhart and the LNR Group 1975], but is tied more c¢losely to the

‘notions of conventional logic than are most network systems.*

o ————— -

¥ The networks of Schubert [Schubert 1976] and Kay [Kay 1973] are also
closely tied to conventional logic, but do not use partitioning.
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A. A Preliminapry Example

In its simplest form, a knowledge representation network consists
of a collection of nodes interconnected by an accompanying set of arcs.
" Each node denotes an object (a physical object, situation*, set) and
each arc represents an instance of a binary relation. For example, the
nodes JOHN and MEN in Figure 1 denote a man John and the set of all men,
respectively. The arc labeled "e' from JOHN to MEN indicates that John

is an element of the set of men and is thus some particular man.

Further details concerning how the interconnections among nodes and
arcs can be used to encode knowledge may be seen by considering Figure 1
systematically., At the top of the figure is the node UNIVERSAL. This
‘node denotes the set Universal, the universal set of objects.** Arcs
labeled "s", called "s arcs", are used to indicate subset relationships
that exist between Universal and other sets. In particular, the s arc
from HUMANS to UNIVERSAL indicates that Humans, the set of all human
beings, is a subset of Universal. Similarly, Situations, Times, and
‘Physobjs (the set of all physical objects) are also indicated as being
subsets of Universal. At the next lower level, Men is shown to be a

subset of Humans.

As indicated above, set membership is encoded in the network
through the use of "e ares". Thus, the network of Figure 1 indicates
that John is a man, 0ld.Black is an automobile, and T1 and T2 are

instants in time.

The node Q denotes an element of the set Ownings, the set of

- * McCarthy [MeCarthy 1968] has used the term situation to refer to the
complete state of affairs at some instant of time. I prefer to use the
‘term state of the world toe refer to this concept, and to use the term
-situation to refer to any event or state of being that occurs over an-
" interval of time. Thus, my 'notion of a situation might be applied to
- such conditions or circumstances as Mary owning a ecar (a -state of
being), or Mary driving her car to town (an event).

S Symbols composed of all capital letters are used as the names of

nodes. Entities denoted by nodes are given names in which only the
first letter is capitalized.
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FIGURE 1 A SIMPLE REPRESENTATION NETWORK
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situations in which an agent owns an object over some time period.+ ' In
turn, Ownings is a subset of Situations, which is the set of all static
conditions and dynamic events. For the particular situation Q, John is

the agent that owns the object, 0ld.Black, during the period from time

T1 until T2. The components of situation Q are associated with it

through deep case relationships. In general, a deep.case (or slot or
role) is a relationship between a situation (or other composite object)
and a participant in the situation. For example, the agent of situation
Q is indicated by the agt arc from Q to JOHN. (The notion of a deep
case, which is a relationship between world objects, contrasts in the
linguistic 1literature with the notion of a surface case, . which is a

relationship between syntactic units.*)

B. Useful Restrictions on Nodes and Arcs

Proponents of network structures have adopted a number of different
conventions concerning what types of concepts may be encoded by nodes
and what types of relationships may or should be encoded by arcs.** In
creating our encoding structures, we have attempted to use construects

that are understood by appealing to such familiar mathematical systems

‘as set theory and predicate calculus. Qur nets place no restrictions on

the types of objects that may be represented by nodes. However, arcs
are restricted to the encoding of formal binary relationships, such as
taxonomic (element and subset) relationships and deep <case

relationships.***

Deep case relations must be funetions. S0, for
example, any Ownings situation has exactly one start-time, but the same

time T may be the start-time of many situations. Deep cases must also

+
© Methods for describing properties that are common to all elements of a

set are discussed subsequently.
See [Fillmore 1968]..

** For a useful perspective on these issues, see [Woods 1975].

. %R e set of case relationships is open-ended. In particular, no

fixed set suech as {AGT, 0BJ, GOAL, THEME} is assumed.
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be constant over time and circumstance. Arcs are never, for example,
allowed to encode relationships, such as ownership, that are time

bounded.

Relationships that are not represented by arecs are represented by
nodes having outgoing case arcs pointing to the participants in the
relationship (such as node Q in Figure 1). This representational
convention allows an arbitrary amount of information to be stored with a

‘relationship (using case ares) and allows associative retrieval of the
relationship using the network's indexing facilities (i.e., by following
the arcs). Such relationships are grouped by type into sets and these

sets are considered to be subsets of the set of all situations.

Some network systems have a small fixed number of arc labels, with
each having a special meaning to the network processor. However, having
many meaningful labels can be quite beneficial. Even our general-
purpose routines that retrieve information from a network without
special knowledge concerning the meanings of arc labels operate more
efficiently when more case names are used, because an increase in the

number of arc labels provides a finer index into the net.

C. The Hierarchical Taxonomy

The presence of e and 8 arcs in a network serves to taxonomize the
concepts represented by the various nodes in hierarchical form and is a
key feature of the notation.* Because the knowledge of whether or not an
item belongs to a given set 1is of central relevance in question

-answering and fact retrieval, the taxonomy itself often provides a
natural and concise expression of major portions of the information
about a task domain. The significance of the taxonomy is further
enhanced by the fact that the members of many sets have a collection of
properties in common. Any property that is characteristic of all
members of a given set may be described at the set level and need not be
repeated in the encoding of each individual set member. This set-level
*“By—using disjunction, certain ambiguities regarding the hierarchy may

be encoded. For example, it is easy to represent the fact that John's
pet is either a dog or a cat.



encoding, which requires the use of universal quantification, leads to

great savings in storage.

To enhance the precision of the network encoding of taxonomies, the
standard set-theory notions of set membership and set inclusion, which
are expressed by e and =3 arcs, may be supplemented by the more
restrictive concepts of disjoint subsets and distinct elements.

Most sibling subsets described in taxonomies are disjoint. Arcs
labeled "ds" are used to represent this disjointness property in a
concise and easily interpretable manner. A4 ds arc from a node X to a
node Z indicates that +the set denoted by X is a subset of the set
denoted by Z and that the X set is disjoint from any other set denoted
by a node with an outgoing ds arc to Z. For example, the ds arcs in
Figure 2 emanating from the HUMANS and COMPANIES nodes indicate that the
set of Humans and the set of Companies are disjoint subsets of the set

of Legal-Persons.

Since each node in most taxonomies denotes a distinet entity, and
in general an entity can be denoted by any number of nodes, arcs labeled
de (for "distinct element") are used to indicate that each of two or
more nodes dencotes a different element of a set. In particular, a de
arc from a node X to a node i indicates that the entity denoted by X is
an element of the set denoted by Z and that the ¥ entity is distinect
from any other entity denoted by a node that has an outgoing de arc to
Z. For example, the de arcs in Figure 2 emanating from G.M. and FORD
indicate that G.M. and Ford are distinct members of the set of

companies.,

To see the useful interplay between de arcs and e arcé, suppose
Tom, Pick, and Harry went for a drive, and the driver wore a red cap.
_TOm, Dick, and Harry are distinet elements of the set of people who went
for the drive, and their membership in the set would be recorded by
‘three de ares. The driver is also 4n this set, but could be any one of
the three. Using a normal e arc to show the membership of the driver
allows information about the driver (e.g., he wore a red cap) to be
recorded while maintaining the uncertainty as to which of the three set

members the driver really is.
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MAJOR-OK-CITIES

de

OKLAHOMA-CITY

Figure 3 Taxonomy of U. S. Cities

The use of e, s, de, and ds ares in a more extended example is
shown in Figure 3. The network indicates that US-Cities and P-US-Cities
‘are both subsets of each other. Hence, the nodes US~CITIES and P-US-
CITIES may both be interpreted as denoting the set of all cities in the
Usa. The node US-CITIES 1is used to help taxonomize cities by state.
The ds ares to US-CITIES from CA-CITIES, TX-CITIES, and OK-CITIES
indicate that the sets of cities in California, Texas, and Oklahoma are
all subsets of US~Cities and are disjoint from one another. The node P-
US-CITIES is used to help taxonomize cities by population dinto the
© disjoint sets Major-Cities and Small-Cities. Notice particularly that
~any of the disjoint subsets of P-US-Cities may (but in general need not)
intersect with any of the disjoint subsets of US-Cities. In particular,
the network shows Major-OK-Cities to be a nonempty subset of botn OK-
Cities and Major-Cities.
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The membership of Major-OK-Cities includes Tulsa, Oklahoma«City,
and X. Tulsa and Oklahoma-City are shown to be distinet. X might be
either of these or yet some other city. If the cardinality of Major-0K-
Cities is 2, then it is possible to deduce from the net that X is either
Tulsa or Oklahoma-City. The very ambiguity regarding which distinet
-element of Major-0K-Cities is actually denoted by X is attractive for

some applications (as shown in the Tom, Dick, and Harry example).

Note that distinctness and disjointness properties may be
propagated through a network. In particular, if A has an outgoing de
arc to 51, and B has an outgoing de arc to 32, and there are unbroken
paths of ds arcs from both S1 and S2 to some common superset S3, then S1°
and 32 are disjoint, and A and B are distinet. In fact, every element

of S1 is distinct from every element of S2.

The use of ds and de arcs increases the power of the taxonomy by
making it possible to prove negative assertions. For example, with CA-
Cities and COK-Cities known to be disjoint, it is possible to show that
Tulsa (or X) is not a California city. Information about
nonintersection and nonequivalence can be encoded by other means, but
the de and ds ares allow much of this information to be encoded for the
price of the hierarchical information alone, without additional

structure.

IV  PARTITIONING

4. Spaces

A new dimension to the organizational and expressive power of
representation networks may be added by extending the basic concept of a
network as a collection of nodes and arcs to include the notion of

partitioning [Bendrix 1975a, 1975b]. The central idea of partitioning

"is to allow groups of nodes and ares to be bundled together into units

called spaces, which are fundamental entities in partitioned networks,

on the same level as nodes and arcs.*

11



Every node and every arc of a network belongs %o (or lies in/on)
one or more spaces. Associated with the data structure encoding a space
is a list of all nodes and a list of all arcs that lie within the space.
Likewise, associated with the data structures of nodes and ares are
lists of all the spaces upon which they lie, Nodes and ares of
different spaces may be linked, but the linkage between such entities
may be thought of as passing through boundaries that partition spaces.
Nodes and arcs may be created in (initially empty) spaces, may be
tranaferred or copied {at a fraction of ¢reation cost) from one space to

another, and may be removed from a space.

51

AUTOMOBILES

" Figure 4 Partitions Around Syntactic Units

An  important application of spaces in language processing, which
provides a convenient introduction to the partitioning concept, is in
-grouping together subparts of .a network that are capable of being

expressed by a single syntactie unit. For example, Figure Y shows a

Aggregate structures similar to spaces have also been described by
Seragg [Scragg 1975b] and Hayes [Hayes 1977], although their structures
have not been applied in 3¢ wide a range of applications as have spaces.

12



network containing three spaces, two of which correspond to syntactie
units. Each space is represented by a rectangle that contains the name
of the space in a corner. Thus, space S1 is the space at the top of the
figure. Diagrammatically, a node or arc is indicated as belonging to a
space if its label iz written within the rectangle associated with the
space. 8o, nede M and the e are from M to MEN lie only in 82. Spaces
31, S2, and S3 may be given concrete interpretations in the context of
the sentence
"SOME MAN M OWNS A CAR C".

Space S1 encodes background information (about men, owning situations,
and automobiles) for the understanding of this sentence. Space 32
encodes "some man MY, the information that would be conveyed by the
syntactic subject of the sentence. Space S3 encodes aspects of an
owning situation P in which the object owned is a car C. This
corresponds approximately to the verb phrase of the sentence (Yowns a
car C").* Figure 4 does not in fact indicate that M was the agent in

owning situation P, but this omission is corrected below.

B. Vistas

It is often convenient to combine several spaces to form a
composite bundle of nodes and arcs representing the aggregate of the
bundles of the individual spaces. Such a combination of spaces is
called a Mvista", and is somewhat like a QLISP context [Reboh and
Sacerdoti 1973]. Most operations involving a partitioned network are
performed from the vantage of a vista with the effect that the
operations behave as if the entire network were composed solely of-those

nodes and arcs that lie in the spaces of the vista, All structures

lying outside the vista are ignored.

The mechanics of partitioning allow vistas to be created freely
from arbitrary combinations of sSpaces, but this freedom is seldom used.
Rather, vistas are typically created in a hierarchiecal fashion by adding

.one new space to an existing vista or to the union of multiple existing

* Tense information is omitted.

13



vistas. A new vista created in this fashion inherits a view of (or
access to) the information in the parent vista(s), and the newly added
space is used for extending local information without altering the view
of the parent{s). Such hierarchically created vistas are analogous Lo
programming contexts with global and local variables. Information
structures in the spaces of the parent vista(s) are global, relative to
phe new space. Because the new space S of a new hierarchically created
vista V is s0 closely related to V, it will be convenient to talk about
"viewing f©he net from the vantage of S" when the viewing is actually

from V.

V1 = {81}
82 83 54
v2 = (82 81) V3 = (83 51} V4 = (34 51)
'\

S6
V5 = {85 53 52 S1}

S6 §7
V6 = (86 55 $3 52 $1} V7 = (57 54 s1}

- FIGURE 5 ABSTRACTION OF VISTA ORDERING

. When new vistas are created hierarchically, they form a partial

6rdering of viewing capability. An example of such a partial ordering
| is depicted in Figure 5. The spaces that are ineluded in the various
 vyistas are represented by reétangles as before. To the right of each

rectangle is a list notation {(vistas are actually implemented as LISP

14



lists) indicating the vista associated with the space. Heavy arrows
indicate the inheritance of viewing capability. That is, from any point
in the partial ordering, information is visible in any space that may be

reached by following up heavy arrows.

Space S1 at the top of the figure is associated with vista V1,
which contains only spade 51. From the vantage of V1, only the
information in St is visible. The vista of S2 is V2, which contains
both 32 and S1. Thus, from the vantage of V2, all the information in
both 32 and S1 is visible. However, the information in S3 is not
visible from V2 (except to the extent that S1 or S2 contains some of the
same nodes and arcs as S3). From the vantage of V5 1t is possible to
see all the information in both 82 and 33, as well as the information in
S35 and 31.

Figure 6 provides some indication of how vista hierarchies may be
used. Again, the heavy arrows indicate which spaces are included in the
vistas of spaces. From the vista of space VP1, it is possible to see
information on spaces VP1, Vi, NP2, and BACKGROUND. Thus, from the
vantage of VP1, it is possible to see the background information and the
structures used in creating a network interpretation of the verb phrase
(VP} in the sentence "Some man M owns a car C". This view includes the
information of space V1 (which encodes the verb alone), space NP2 (which
encodes the direct objeect alone), and space VP1 (which encodes the
relationship between the verb and object). From this same vantage, the

structures in spaces NP1 and S1 are invisible.

In subsequent diagrams, when a rectangle representing a space S is
drawn completely within a rectangle representing a second space 3', then
this indicates that the vista of 5 is an extension of the vista of 3'.
For example, A and B in Figure T represent equivalent structures. If
two rectangles overlap, buft neither contains the other, then structures
appearing in the overlap.lie on both spaces. Examples of such overlaps

cccur in the section on quantification below.
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c. Relating Spaces to Predicate Calculus

The collection of nodes and ares composing a network encodes a body
of information in much the same fashion as a set of propositions in
predicate calculus. If a total network is regarded as a large set of
propositions, then a space may be regarded as a subset of the
propositions, and a vista may be regarded as the union of a number of
the subsets. Thus, for example, the vista consisting of spaces VP11, V1
and NP2 of Figure 6 contains the set of propositions that are conveyed
by the verb phrase of the example sentence. This set of propositions
may be thought of as a single proposition formed by conjoining the
individual members of the set. Thus, the spaces and vistas may be
regarded as propositions, that is, as expressions of information about
the world. This, of course, is consistent with the notion that a

network is an expression of information.

D. Supernodes

By bundling together a collection of representational structures, a
space may be used as the aggregate expression of the information encoded
by its internal nodes and arcs. For example, a certain space S might
bundle together a collection of nodes and ares which, when taken
together, represent the set of things that some person has told about in
a story, or believes to be true, or wishes to have happen. Each node
and each arc represents some aspect of the belief (story, wish), but
only the space is a representation of the aggregate of these aspects.

Because it 1is often necessary to relate other concepts in the
network to the proposition encoded by a space, supernodes may be created
to denote spaces. Superncdes have all the properties of ordinary nodes,

and in particular may be pointed to by arcs.

_ When a supernode 1is formed to denote a space, a QUOTE-type
operation takes place. The supernode comes to denote the expression of
‘the information represented by the space. That is, the space represents
information about the modeled domain, and the node denotes the

representation.

18
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FIGURE 8 THE BELIEFS OF JOHN

An example superncde is shown abstractly in Figure 8. Node X
represents a believing situation in which the believer (agt = agent) is
JOHN and the thing believed (thm = theme) is a complex of information
encoded by space Si. More precisely, the structures inside S1 (omitted
in the figure) may be thought of collectively as a complex proposition
~that JOHN believes to be true. Moreover, the structures of the space

represent objects and situations that JOHN believes to exist.¥

It 1is important tc note that by allowing the network to express
information about expressions, the use of supernodes c¢an lead to
interesting inconsistencies and paradoxes, some of which are discussed
by Montague [Montague 19747. For example, the Liar Paradox ("this

statement is not true¥) is easily expressed in a partitioned network.

A discussion of the use of partitioned networks in modeling belief
structures is presented in [Cohen and Perrault 19761].
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Fortunately, these problems have had little impact on our current work.
This is because our systems that manipulate information about
expressions currently limit their scope of activity to information about
. the standard logical connectives. For example, these systems know that
if the disjunction of expressions E1 and E2 provides an ambiguocus
-deseription of some aspect of a world W, then either the objects and

situations described by E1 or those deseribed by E2 exist in W.

Vv  STRUCTURES FOR LOGICAL DEDUCTION

Building upon the basic notions of nodes, arcs, spaces, vistas,
taxonomies, situations, and deep cases, structures may be devised to
meet the needs of various applications. This section describes how the
basic notions may be extended to meet the needs of a system that does
logical deduction. In particular, structures are deseribed for handling

logical connectives and quantification.

A. Logical Connectives

1. Conjunction

As the first logical connective, consider conjunction, which
relates a number of components called "conjuncts®. Thinking of each
conjunct as a description of some condition, the conjunction itself is a
complex description of the situation in which the conditions described

by each of the individual conjuncts exist in unison.

The inherent bundling capability of spaces makes them a
convenient medium for dealing with conjunction. In particular, a
conjunction C corresponds to a space S upon which network structures are
created corresponding to each conjunct of C (and only the conjuncts of
C). Space S2 of Figure 9, for example, represents the information
conveyed by the conjunction "0Old.Black was built by Ford and 0Old.Black
'is  owned by John", The subordination of 82 under S1 in the viewing
hierarchy is rather artificial and was done here solely for exposition.

20



OLD.BLACK

L3

FIGURE 9 OLD.BLACK WAS BUILT BY FORD AND IS OWNED

BY JOHN
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Except for delimiting the conjunction (X & Y), the structures of S2
might just as well have been encoded directly in S81. This ability to
remove the partitioning of S2 is the network analog of the ability to
remove the embedded parentheses in the formula (4 & (B & C}) to form (A
& B&C).

2. Disjunction

A disjunction separates out a number of components called
"disjunets", each of which describes an alternative set of conditions.
The inherent separating ability of spaces makes them a convenient medium
for dealing with disjunction. In particular, the information encoded by
each of the n disjuncts of a disjunction D may be encoded on a different

space and so kept {(and reasoned about) in (relative) isolation.

Figure 10, for example, shows the network encoding of the
disjunction D = "Either (0ld.Black was built by G.M., or 0ld.Black is
owned by John". Node D denotes the disjunction itself. It is an
glement of the set Disjunections, which might more properly be labeled
"True Disjunctions" because it denotes the set of sets of propositions
.in which at least one proposition represents entities that exist in the
modeled world. That is, a disjunction like D can belong to Disjunctions
in some world W only if the objects and situations described by at least
~one of its disjuncts exist in W. The disjuncts of D are represented by
supernodes 82 and S3. 8inece a disjunction may be regarded as a set of
alternative disjuncts, the disjuncts of D are shown as distinet elements
of D. Whenever a disjunction appears in the network, it is assumed that

all members of the disjunctive set are explicitly encoded.

The entire disjunction structure is embedded in the
conjunction of 381. 81 provides a partial description of some world
(i.e., a collection of objects and the interrelationships among them)
‘and each structure in S1 represents some object or situation that occurs
in that world. So, when the network is viewed from the vantage of 51,
such entities as 0Qld.Black and D are seen to occur. However, the
structures in spaces S2 and S3 are not seen from the vantage of S1 and
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are thus not asserted in the world modeled by 81. Since D does appear
in the world of S1, it is known that the world of S1 includes the
gituations described by at least one of the disjuncts of D. If 82, for
example, were included, then the modeled world would ineclude all
situations described by structures that are visible from the vantage of
S52. This view includes structures in S2 and S1, but excludes structures

in 33.

3. Negation

The network encoding of negation uses partitioning to separate
the negative from the positive. Figure 11 shows the network encoding of
the negation "G.M. did not build 0Old.Black". The negation, an element
of NEGATIONS®, is encoded by supernode S2. Space S2 is an (implicit)
conjunction describing a set of conditions that cannot occur
simultaneously in the context of the conditions described in S81. As in
the disjunction example, the negated structures inside S2 are not
visible when viewing the network from the vantage of S1, although the
negation itself is visible. That 1is, the description (denoted by
supernode S2) of the negative conditions (described by space S2) exists
in the world of 31, and the fact (denoted by the e arc from S2 to
NEGATIONS) exists in S1 that this deseription encodes a nonexistent set
of conditions for the world of S1. But entities described by S2 do not
(all) exist in S1.

g, Implications

Implications can be encoded by conversion to negations and
disjunctions. (A => C is the same as “A v C in propositional logic.)
However, it 1is also possible to encode implications directly, as shown
abstractly in Figure 12. An implication I ocecurring in space S is
-associated by case ares with a collection of antecedent conditions,
represented by a space A, and a set of consequent conditions,
represented by a apace C. As above, spaces A and C may be regarded as
conjunctions,

In a world W, Negations is the set of propositions that are not true
in W.
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FIGURE 12 ABSTRACTION OF AN IMPLICATION

B. Quantification

One of the important features of network partitioning is that it
provides a facility for representing arbitrarily nested existential and
universal quantifiers. Existential quantification is an implicit
concept in the sense that the occurrence of a structure (i.e., a node or
~arc) in a space is taken to be an assertion of the existence with
respect to that space of the entity represented by the structure.
Existential quantification and negation could be used to represent any
universally quantified formula® (Ax in X)P(x) by making use of the
following transformation:

( A% in {)P(x) {=> “~"[(Ax in X)P(x)] <z “[(Ex in X}~P(x}].
Although the network encoding suggested by this transformation is

® mpr i35 written for universal quantification, "E" <for existential
quantification, "in" for set membership, and ™"<=>" for equivalence.
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logically sound, it is cumbersome and unappealing intuitively. The
following transformation suggests a more attractive representation:

(Ax in X)P(x) <=> (Ax)[member(x, X) => P{x)].
That is, any universally quantified formula can be represented as an
implication whose antecedent specifies the typing of the universally
- quantified variable and whose consequent specifies the statement that is

‘being made about any entity that satisfies the type restrictions.

A distinguishing feature of the universally gquantified variable x
in this implication is that it occurs in both the antecedent and the
consequent. Thus, in the network representation of an implication, if a
node occurs in both the antecedent and the consequent space, it is

considered to represent a universally quantified variable®,

Figure 2 shows the representation of a concrete example of such an
implication, namely the statement "For all M in the set of Mustangs,
there exists a B such that B is an element of the set of Builds
situations, the agent of B is Ford, and the object built is M", or

Am[member(m, Mustangs) => built{Ford, m)]
When the main connective of a formula is an implieation, it is not
necessary to embed the formula in another implication to represent the
universal quantification. That is:

(Ax in X)[Q(x) => R(x)]
<=> (Ax){member(x, X) => [Q(x) => R(x)]}
<=> (Ax){[member{x, X) & Q(x)] => R(x)}}.

Arbitrary nesting of quantifiers may be achieved by placing implications
in the consequent spaces of other implications. For example:
(Ax in X)(By in Y)(Az in Z)P(x,y,z) <=>

{Ax) {member(x, X) =
(Ey) [member(y, Y) & (Az)(member(z, Z) => P(x,y,z))1}.

i e ek s o

both ante and conse spaces, but is referenced (i.e., pointed to by an
arc) in both ante and conse. For example, FORD is referenced in the
conse space of the implication of Figure 2.
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C. A Deduction Algorithm

The structures presented above are useful in deduction and question
answering only to the extent that there exist procedures having the
logical expertise needed to manipulate them. The general flavor of such
procedures, which are discussed more extensively in [Fikes and Hendrix
19771, is indicated by the following, highly simplified example.

The deduction system is given as input a QUERY space representing a
question to be answered (theorem to be proved) and a KNOWLEDGE space
representing the beliefs that are to be considered true while answering
the question. In aggregate, the nodes and arcs of QUERY describe a set
of objects and relationships whose existence is to be established in the
world of the KNOWLEDGE space. If a set of such entities can be found, a
list of bindings that link the QUERY descriptions to their XNOWLEDGE

instantiations is to be returned.

For example, Figure 2 shows a QUERY and KNOWLEDGE space for the
question "What company built Old.Black?" Given this problem, the system
seeks an element (like Z) of the Builds situation set having both
Old.Black as its object and an element (like ?X) of the Companies set as
its agent. Looking for a match for Z, the system first looks only at
structures in the KNOWLEDGE 'space. The Builds situation represented by
node P is found by using the incoming e ares to the BUILDS node as an
index. However, P is rejected as a mateh for Z because the obj arcs
from Z and P point to nodes that are members of disjoint sets,
indicating that Z and P have different objects.

Because there are no other incoming e arcs. to BUILDS in the
KNOWLEDGE space, the system changes strategy and looks for elements of
the Builds seft that are buried in 1logical expressions. Indexing again
on the incoming e ares to the BUILDS node, the "theorem" "All Mustangs
.Were built by Ford" is found. A unification process determines that the
relevant instance of the theorem is one in which the universally
quantified variable M is instantiated by Old.Black. The theorem allows
a newWw Builds situation to be asserted if it can be shown that Qld.Black

is an element of the Mustangs set. A subproblem i=s created to find that
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ElementOf relationship, and when the subproblem is solved, a new Builds
situation is asserted in KNOWLEDGE and the desired bindings are
assigned. In particular, node ?X is bound to FORD and Z is bound to the
newly derived Builds situation. Because node 7?X is marked for
questioning, its binding, FORD, is returned as the answer to the

original question.

VI  INHERITING INFORMATION

a. The Contributions of Quantification and Case

The notion of a hierarchical taxonomy was presented earlier as a
basic concept in nets used for the representation of knowledge.
Although the taxonomy alcne provides the information needed to answer
several types of element/set/subset questions, the taxonomy's primary
attraction 1is in supporting the 'inheritance" of information. In
particular, if certain properties P are known to be characteristic of
“all the members of a given set §, then it follows that all the members
of the set's subsets also have the properties P and that each individual
member of the set S and of its subsets has the properties as well. To
explicitly reencode the properties P with each of the individual
representations for S, its subsets, and its many individual members
would be highly redundant. Instead, the properties P may be recorded
solely with the representation of S and deduced for the subsets and
individual members on demand. For example, if the fact that dogs have
cold noses 1is recorded with the node representing the set of all dogs,
then it is unnecessary to explicitly encode the fact that all members of

 the set of Hounds and the individual dog Fido have cold noses.

The procedures implementing deductions based on set membership and
-set inclusion may make very efficient use of the network data structures

that encode taxonomic information. For example® , in looking for a

In this example, given particular object Q we ask if Q has property P.
A more demanding application of the inheritance information, whiech is
discussed in [Moore -1975] and in [Fahlman 1977], is to find an object Q
that has property P.
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property P of an object Q, these procedures may determine whether P is
recorded with the data structure representing Q. If it is, no deduction
need be done. If it is not, the procedures may work their way up the
taxonomy above Q, checking to see if information about P is encoded with
any of the sets and supersets to which Q belongs. Because such a search
may be efficiently implemented, the deduction procedures make it appear
as if the representation of object Q had inherited its own copy of
information about P from supersets in the taxonomy.

Unfortunately, many network schemes have been devised that indicate
inheritance either incorrectly or through a complicated system of ad hoec
rules and structures. Various shortcomings are catalogued in [Woods
1975] and in [Brachman 1977]; Those systems that behave incorrectly
suffer primarily from the failure to carefully distinguish properties of
sets (such as cardinality) from properties of individual members of a
set. For example, the individual members of a set of numbers may all be
primé, but the set is not prime. Those systems that are clumsy or ad
hoe fail to recognize that the encoding of information regarding all the
individval wembers of a set inherently involves universal

quantification.

In general, if a set S has some property Q, it should be encoded by
the network formulation of Q(3). Q might be encoded by a single arc or
by a situation node with a case arec to S and other ares to other
participants in the situation coded by Q. If the individual members x
of S all have property P, then this information should be encoded by the
network formulation of Ax[member(x, S) => P(x)]. Note particularly that
P is not applied to S but to the values of the universal variable x that
ranges over 3.

Along with quantification, the notion of case plays an important
role in "inheritance'. Our explicit restriection that case arcs
. designate only instances of functions is a key (but often unrecognized)
factor in network deduction. Suppose, for example, that it is known
that

Ax{member(x, Ownings) => Et1,t2 [start-time(x, tl) &
end-time(x, t2) &
BEFORE(t1, t2) 1}
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& member{q, Ownings)
& start-time(q, I)
& end-time(q, J)

~From this information, is it possible to deduce that I, the start-time
of q, is BEFORE J, the end-time of q? Certainly, the universally
quantified statement (UQS) indicates that there exist T1 and T2 which
are a start-time and an end-time for q with T1 BEFORE T2, but it is the
fact that start-time and end-time are cases, and therefore functions,
‘that indicates that T1 and T2 are necessarily identical to I and J
respectively.

In general, for any case relation ¢, the function property brings
with it the restriction that

Ax,y,z{[c(x, ¥) & c(x, 2)] =2> y=z}

The point here i3 that for a composite object (some object
associated with cases), not only may the objeet 1itself M"inherit?
properties, but the asscciated objects that fill case roles may also
"inherit" properties. That is, from a UQS of the form

Ax{member(x, S) => P(x) & Ey[e(x, y) & Q(y)]1}
where ¢ designates a case relation, it follows that
If A is in 8, then P(A)
and
If oA, B)*, then Q(B).

B. Delineation

By indicating some common properiy P of members of a set §, a
universally quantified statement serves to partially define and bound S.
That is, by stating that all members of 3 have property P, a UQS
indicates that only individuals having property P are in S. Thus, the
_UQS provides an indication of a 1limitation on the membership of S.
Formally, this limitation arises as a consequence of the fact that

{Ax[member{x,S) => P(x)]} <=> {Ax[~P{x) => ~member(x,S)1} .

* That is, if B fills the role ¢ for A.
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For purposes of understanding natural language inputs, UQSs serving
to 1limit the membership of situation sets are very important. In
particular, it is useful for each situation set to have a UQS, called
the set delineation, that names and restricts the participants of
sitvations in the set. That is, the UQS specifies deep cases that are
to be aassociated with situations of the type being delineated and
indicates a possible set of wvalues for each case. For example, the
.delineation of the set Ownings is shown in Figure 13, and corresponds to
the formula

Ax{member(x, Cwnings) =>
Ey,z,t1,t2[member(y, Legal.persons) & agt(x, y) &
member({z, Physobjs) & obj{x, z) &
member(t1, Times) & start-time(x, t1) &
member{t2, Times) & end-time(x, £2) ] }

This UQS indicates that all Ownings situations have an agt, obj, start-
time, and end-time, Further, the agt must be a member of Legal.persons,
the obj must be (in this system) a member of Physobjs, and the start-
time and end-time must be elements of Times. More complex restrictions
- may also be added. For example, the start-time could be restricted to
precede the end-time, and the obj could be excluded from the set of

Humans.¥

By using delineations, a speech or natural language understanding
system is able to reject certain anomalous combinations of phrases that
nevertheless meet syntactic and acoustic criteria for being joined. For
example, if various indicators suggest that an input utterance mentions
an ownership situation in which the role of agt (not obj) is played by
an automobile, then the delineation of OWNINGS may be used to reject the
hypothesis on the grounds that the role of agt may be filled only by

elements of Legal-Persons.

* The information that may be encoded by delineations appears to cover
the information that is encoded on what Brachman [Brachman 1978] calls
the "epistemological level of desecriptions.
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VII  STRUCTURES FOR JUDGMENTAL REASONING

There are a number of reasoning tasks that require an ability to
deal with sketchy and/or uncertain information. For these tasks, the
precise rules and two-valued logic of conventional deduction systems are
too confining. However, such systems as MYCIN [Shortliffe 1976] and
PROSPECTOR [Duda, Hart and Reboh 1977] have dealt successfully with
uncertain reasoning by using judgmental production rules. For example,
PROSPECTOR uses such rules as

"Limonite casts suggest the probable presence of pyrite",
Such rules resemble an implication
E1& E2& ... &En => H
here the Ei are individual pieces of evidence suggestive of a hypothesis
H. Although the presence of evidence Ei seldom implies H with
certainty, it is usually possible to give some rough estimate of both
the necessity and the sufficiency with which some condition Ei indicates

the existence of H.

Judgmental rules of this type may be encoded in partitioned
networks by generalizing the structures wused to encode logical
impliecation. In particular, the Ei of a judgmental rule are placed in
the implication's antecedent, the hypothesis 1is placed in the
consequent, and the implication node is given two new case arecs
indicating the necessity and sufficiency of the evidence in support of
the hypothesis, (PROSPECTOR stores necessity and sufficiency on the
node property list, rather than use the more expensive case ares.)

Many Jjudgmental rules are needed to produce a functional system.
Moreover, because the hypothesis of one rule may be evidence for
another, the antecedent and consequent spaces are effectively chained

together into what may be called an inference net. When incoming

-~ information changes the probability of any piece of evidence, the
probabilistic implications will ripple through the net, reassigning the
probabilities of many hypotheses.
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The use of partitioned networks to build inference nets and the
processes for propagating probabilities are discussed in [Duda, Hart,
Nilsson and Sutherland 1977].

VIII  STRUCTURES FOR REASONING ABOUT PROCESSES

Systems, such as those deseribed in [Fikes, Hart and Nilsson 19721,
[Hendrix 19731, [Scragg 1975a] and [Sacerdoti 1977], that do planning or
other reasoning about processes have made extensive use of state-of-the-
world models (SWMs) and operators that describe how one ' state may be -
transformed into another. Partitioned  networks offer attractive

structures for encoding both SWMs and operators.

Hopefully, it is clear that a given world state can be modeled by a
.space containing structures representing the various conditions existing
in the given state®*, Relationships between =states may be encoded by
structures that point to the state deseriptions as supernodes. To the
extent that two states are similar, their encoding spaces may share

common nodes and ares.

Operators also may be enéoded conveniently in networks, and are, in
fact, needed to express much of the meaning of event situations. For
example, Figure 14 shows an abstraction of the delineation of the set
Exchangings. As in the delineation of other situations, the various
deep cases assoclated with an exchange are indicated. The delineation
‘also contains an event descriptor D which aids in encoding some of the
dynamic aspects of an exchange. In particular, D indicates that any
exchange U will be associated with certain preconditions P and certain
effects E.

Both P and E are conjunctions of conditions that may reference the

process parameters v, W, X, ¥y, and t. For an instance of Exchange to
exist with particular bindings for the variables, the preconditions must

———— s

® States of the world are represented in such systems as STRIPS [Fikes,
Hart and Nilsson 1972] by sets of propositions, which are the predicate
caleulus analog of spaces.
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be met with the same bindings. If the exchanging does occur, then all

of the effects (which may include disjunctions to represent uncertain

outcomes) are implied just as if the impliecation
Av,w,x,y,t{exchange(v,w,x,y,t) => effects(v,w,x,y,t)]

had been encoded explicitly.

An important aspect of processes is that they usually may be
decomposed into a sequence of subprocesses. The delineation of Shopping
events, shown abstractly in Figure 15, has provisions for such a
decomposition. Preconditions and effects may be used to understand
shopping at a course level of detail. For a finer look, the event
diseriptor includes a plot that shows how shopping decomposes into a
sequence of subprocesses., This plot takes the form of a transition
network, which is similar to the ATNs [Woods 1970] wused for parsing
sentences. Rather than parse or generate sentences in a language, this
transition net may be used to recognize or generate sequences of events
that in aggregate constitute a shopping event. For example, one
successful path through the event grammar is: GO-STORE-1, GO-STORE-2,
EXCHANGE (at STORE-2), GO-HOME.

Each node in the plot network is actually a variable indicating an
element of some event set; Since each event set has its own
delineation, the subevents may be understood either in terms of their
preconditions and effects, or recursively, in terms of their own plots
(when available). For example, the instance of Exchangings in Figure 15
may be expanded through the delineation of Exchangings in Figure 14.

IX  STRUCTURES FOR NATURAL LANGUAGE UNDERSTANDING

This section discusses the use of networks in a natural language

understanding system {(NLUS).
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A. A Simple Example

To introduce the most basic aspects of using nets in a NLUS,
consider the translation of the sentence

"SOME MAN OWNS A CAR."

The ultimate result of the literal translation process for this sentence
is the network structure in space SCRATCH of Figure 16. Structures
representing inputs are constructed in scrateh spaces to separate them
from the system's model of the domain of discourse, which 1s recorded on
a space labeled BACKGROUND. (Onlj a fraction of BACKGROUND appears in
the figure.)

The interpretation of SCRATCH space structures is quite =simple:
Node M denotes some man {(an element of Men), € denotes scme Automobile,
and P denotes an Ownings situation in which the agent is M and the
object is €. Because the input is understood through its relationship
to previous knowledge, =several arcs in the SCRATCH space 1link the
interpretation of the new input to BACKGROUND anchor nodes. Also,
because the SCRATCH space is meaningful only in the context of
-BACKGROUND, the vista of SCRATCH includes BACKGROUND.

As a supplementary feature, the figure also includes a node S that
represents an element of the set of Meaning Situwations. In particular,
S associates the linguistic entity "some-man-owns-a-car" (i.e., the
sentence itself) with its interpretation. Thus, the net encodes the
semantics of the sentence in the conventional sense of "semantics™ as a

relationship between linguistic objects and their meanings*,

To suppress syntactic technicalities, assume the highly simplified

language definition:

GRAMMAR LEXICON
Ri: S => NP VP NP: some-man, a-car
R2: VP => V NP V: owns

i iy s o .

* The propogition denoted by the supernode SCRATCH captures only a small
(but very central) part of the total meaning of the sentence. The
proposition refers to concepts such as the set of Men and the set of
Ownings. Clearly, the total meaning of the sentence must take into
consideration what it means to belong to these sets. Moreover, a large
number of inferences may be drawn from the information recorded on
SCRATCH. These inferences, too, are a part of the extended meaning of
the sentence.
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.

In the translation process, spaces are created {o represent the
meanings of each grammatical constituent of the total utterance. These
spaces are shown in Figure 6, with heavy arrows indicating the
visibility hierarchy.

At the start of processing, space BACKGROUND encodes both general
and some specific knowledge about Men, Automobiles, and Ownings
situations. This knowledge is referenced during the translation
procesas. For example, upon spotting the noun phrase "some-man", the
natural language understanding system (NLUS) sets up a structure
representing the deseriptive meaning of the phrase. In particular, a
new space, NP1, is created below BACKGROUND in the viewing hierarchy.
Within this space, a node M is created with an e arc to node MEN in
BACKGROUND. Thus, node M represents some man and the e arc makes its
membership in the set Men explicit. The new space NP1 separates the
structures built to represent the phrase from all other structures in
the net. Similarly, new spaces V1 and NP2 are set up to encode other
utterance constituents that correspond to explicit lexical entries.
Note particularly that concepts conveyed by nouns and verbs are

repregented uniformly as elements of sets.

Once structures exist for lexical items, subphrases are grouped
into larger units in accordance with the syntax. When syntax suggests
combining V1 ("owns") with NP2 ("a-car") to form a larger phrase, a
surface-to~deep-case map associated with the lexical entry for the verbd
"own" is consulted. This map indicates that an NP directly following
the verb "own" generally specifies the deep obj case.®*

Operating under this hypothesis, the NLUS consults the delineation
of Ownings (see Section VI), which indicates that any obj of an Ownings
‘situation must be a non-Human Physobj. The candidate for the obj is C
~of space NP2. Because C is an element of Automobiles, which in turn is
a subset of Physobjs that is disjoint from Humans, C is accepted. (A
combination such as "owns some-man" would be rejected.)

The NP following '"own" is not always the deep obj. Consider "What
John owns John keeps®.
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Once Vi1 and NP2 have passed the acceptability test, a new space,

VP1, is constructed to help encode the resultant verb phrase. This new

space contains an obj arc linking node P of Vi to node C of NP2. The

‘new arc, which constitutes the new component of meaning that VP1 adds to
V1 and NP2, is visible from space VP1, but is not visible from either 1
or NP2. This leaves the components seemingly unaltered and free to

combine in alternatives to VP11 if necessary.

Continuing the processing, when syntax rule R1 suggests combining
NP1 with VP1 to create an S phrase {sentence), acceptability tests
similar to those described above are made. When these are passed, a new
space, 81, is created as shown in Figure 6, and an agt arc from P to M
is placed in it. Because the new phrase is a complete sentence spanning

the entire input, it is accepted as a legal interpretation.

SOME-MAN OWNS A CAR

NP v NP
v

S/P

FIGURE 17 PARSE TREE FOR “SOME-MAN OWNS A-CAR

The structure built’ -during the translation process has two
particularly interesting features. First, the partial ordering of
spaces from S1 to BACKGROQUND is identical to that represented in Figure
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17, which, because of the choice of space labels, may be recognized as
the syntax tree of the sentence. Second, the view from any space shows
(after subtracting out BACKGROUND) the contribution of the asscciated
phrase to the meaning of the total input. For example, the view from
NP1 shows a man M and its relationship to Men. More importantly, the
view from S1 is identical to the view from SCRATCH of Figure 16.

B. Quantification

After a structure of the form described above 1is constructed, a
second phase of the translation process copies the various nodes and
arcs of the translation from the spaces that reflect the input's syntax
onto structures that reflect its quantification. Because the example
sentence is purely existential, nodes and arcs are copied onto the
single space SCRATCH. Following conventions described in Section V,
this space represents the input as a conjunction of conditions expressed

solely in terms of existential variables.

However, if the input is changed from "SCME-MAN OWNS A-CAR" to
"EVERY MAN OWNS A CAR"
then the situation is diffepent. In particular, the property list of
space NP1 of Figure 6 i= marked to indicate its universal quantification
for the routines that copy from syntactic to quantification structures.
‘To express the universal quantification, the copying routines create an
implication structure, as described previously. Structures from the
space with the universal marking are placed in the antecedent space of
the implication and all structures within their scope are placed in the
consequent space. The "head node" of the marked space is placed in the

overlap, resulting in the structure shown in Figure 18.

Further details concerning the mechanics of this type of processing
“are contained in [Hendrix 1978]. Some interesting theoretical problems

in translating quantifiers are discussed in [Hintikka 1973].

43



MEN

Background

AUTOMOBILES

ante

€

L

i

conse

Scratwch

ON

FIGURE 18 TARGET STRUCTURE FOR "EVERY MAN OWNS A CAR"

44



C. Resolving Definitely Determined Noun Phrases

The noun phrases in "SOME-MAN OWNS A-CAR" are indefinite in that
they do not refer to any man or car in particular. However, the
sentence

"JOHN OWNS THE-CAR"
contains the definitely determined noun phrases "John" and "thewcar",
which refer to particular objects that the hearer is expected to know
about and recognize in context.

The structures built during the parsing of this sentence are shown
in Figure 19. Because "John" is a proper noun whose unique referent is
known to the system, reference is made directly to node JOHN in
BACKGROUND. Space NP1 encompasses JOHN to indicate the interpretation
of the noun phrase. Verb "own" produces space Vi as before, The
definitely determined noun phrase "thewcar" initially produces a
structure NP2 paralleling that produced earlier for “a-car". But this
time the "the" indicates that some particular car, the one currently in
context, is being referenced. If 0ld.Black is the current topic of
conversation, then O0ld.Black is '"the-car". Hence, when 0Old.Black is
determined to be "the-car" by means discussed below, space NP2 becomes
obsolete. In its place, the NLUS constructs a new space D-NP2 around
OLD.BLACK, just as it created NP1 around JOHN.

Following the syntax rules, spaces VP1 and 81 are created as
before, but this time with ares pointing directly to nodes in
BACKGROUND. The view of the interpretation from 81 indicates that the
new information conveyed by the sentence is that an owning situation P

exists between previocusly known objeets John and 0ld.Black.

The point of interest here is finding the referent of "the-car®.
_Essehtially, the problem is to find some object in BACKGROUND that both
| matches the description given by the phrase and is "in context". To
- find objects meeting the phrase description, the NLUS looks for network
structures in BACKGROUND that match the network structure representing
the phrase. (This task may be nontrivial, because much BACKGROUND

knowledge is recorded only implieitly. For example, an e arc from

45



Background

e
OLD.BLACK —( AUTOMOSBILES

f 4 A

/ NP1 D-NPiJ

e Vi e NP2

p ©

FIGURE 19 PARSING “JOHN OWNS THE CAR"
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OLD.BLACK to AUTOMOBILES may be derived from an e arc from OLD.BLACK to
MUSTANGS and an s arc from MUSTANGS to AUTOMOBILES. Were the problem to
find "the car made by Ford", it would be necessary to derive that Ford
made 0ld.Black from the fact that Ford made all Mustangs.) 1In general,
there may be a great many objects in BACKGROUND meeting a given
description, but only those currently in context are wanted.

AUTOMOBILES

4

e e MUSTANGS

c1

FRED'S

CAR LIZZY CLD.BLACK

FIGURE 20 SPACES ENCODING CONTEXTS

The general problem of what objects should or should not be in the
local context at any given point in an extended discourse has been
investigated by a number of workers, most notably Grosz [Grosz 19771,
but is beyond the scope of this paper. However, once a decision has
been made concerning what belongs in a context, partitioning may be used
_ to bundle together the objects of one context and separate them from
those of another. In particular, space C2 of Figure 20 shows OLD.BLACK
and JOHN grouped together into a 1local context that excludes such
objects as FRED'S-CAR. Using vistas, a hierarchy of contexts may be
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defined. If the local context is encoded by space C2, and €1 is in the
vista of C2, then the objects in C1 may also be considered to be in
context, but at a more global level. Cbjects in spaces outside the
vista of C2 are out of context. Following shifts in context during the

course of a discourse is an important area of current research.

D. Ambiguity

The structure built during the parsing of
"SOME-MAN GAVE A-DOG A-BONE"
is shown in Figure 21. The point of interest here is that "GIVE A-DOGY
is locally ambiguous in that it might mean that a dog was given to
someone or that something was given to a dog. The structure of the
figure reflects this ambiguity with VP1 interpreting A-DOG as filling
the obj case, and VP2 interpreting A-DOG as filling the rec (recipient)
case. Note that the viewing hierarchy allows both alternatives to share
spaces V and NP2 without confusion, the rec arc being invisible from VP1

and the obj arc being invisible form VP2.

From the vantage of space 32, the correct interpretation of the
total sentence is visible, with erronecus structures in spaces VP1 and
51 being effectively blockedlout. Thus, partitioning enables networks
to maintain alternative hypotheses concerning the wuse of input
constituents and enables such competing hypotheses to share network
_subparts. Without partitioning or some similar fechnique, the back-
linked nature of networks may cause a constituent to be altered when it
is incorporated into a larger unit and hence render it unusable in

alternative constructions.
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X LINEARIZED NET NOTATION

To provide a convenient formalism for communicating network
structures to the computer, a linearized net notation, called the LN2
language, has been devised as an extension of INTERLISP [Teitelman
1975]. The syntax of LN2 was inspired by and bears some resemblance to
‘the syntax of KRL [Bobrow and Winograd 1977].

The flavor of +this language is indicated by the following
statement, which builds the network of Figure 22.

(1SPACE S1
[UNIVERSAL]
[SITUATIONS (ARE UNIVERSAL)]
[IMPLICATIONS (ARE SITUATIONS)]
[OWNINGS (ARE SITUATIONS)]
[SUBMARINES (ARE UNIVERSAL)]
[LAFAYETTES (ARE SUBMARINES)]
[HENRY.L.STIMSON (A LAFAYETTE)]
[COUNTRIES (ARE UNIVERSAL)
(SINGULAR COUNTRY)]
{THE.U.S. (A COUNTRY)]
[x (AN OWNING)
{agt THE.U.S.}
{obj HENRY.L.STIMSON}]
(TURN.QFF.D)
( IMPLICATION
([U (A SUBMARINE)])
([ (AN OWNING)
{obj U}
{agt (A COUNTRY)}]))
(LN2.3UB
owns (OWNER OWNEE)
[ (AN OWNING)
{agt OWNER}
{obj OWNEE}])
(IMPLICATION
({y (A LAFAYETTE)1)
(<owns THE.U.S. y>)) )

' The total statement is a call to function ISPACE of the form
- (!SPACE name e1 e2 ... en). Its first argument is a name to be given
to a newly created space. All subsequent arguments are expressions to

be executed in the context of the new space.
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@
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FIGURE 22 NETWORK CREATED 8BY LN2
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The first such expression is "[UNIVERSALI", which read-macros
expand into "(INODE UNIVERSAL)". In general, calls to INODE are of the
form (INODE optional-name e1 e2 ... en). The function creates a new
node on the current space, assigns it the optional-name, and then
evaluates the various expressions ei. Thus, [UNIVERSAL] just creates a
node named UNIVERSAL.

Y[SITUATIONS (ARE UNIVERSAL)]" creates a node named SITUATIONS and
then executes the expression "(ARE UNIVERSAL)", which c¢reates a ds arc
from the current node to UNIVERSAL. The next four INODE expressions are
similar.

~ "[HENRY.L.STIMSON (A LAFAYETTE)]" causes a node to be created named
HENRY.L.STIMSON. Function A produces a de are from this node to
LAFAYETTES, the node whose name is formed by adding "3" or "ES" to the
argument of A,

Since COUNTRY has an irregular plural, the expression creating node
COUNTRIES has a call to function SINGULAR to note this fact. SINGULAR
does the necessary bookkeeping so that the call to A in "[THE.U.S. (A
COUNTRY)]*" works properly.

"[x (AN OWNING) {agt THE.U.S.} {obj HENRY.L.STIMSON}]" creates node
%, encodes x as a distinet element of OWNINGS, and then creates an agt
arc to THE.U.S. and an obj arc to HENRY.L.STIMSON.*

The expression "(TURN.OFF.D)" changes the operation of functions A
and ARE so that de and ds arcs are replaced subsequently by e and s

arcs.

Function IMPLICATION takes two arguments: a list of expressions for
creating structures inside an implication ante space and a similar list
for the conse space. IMPLICATION builds a new element of IMPLICATIONS
‘with appropriate new spaces and then executes the lists of expressions.
:Néw-structures created or referred to by both ante and conse are placed
 in the overiap.

* 4 delineation for the set of Ownings situations would be inecluded in a
more complete network, but is omitted here.
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In the first IMPLICATION of the example, the ante space expressions
(there is only one) cause a node labeled "U" to be created with an e arc
to SUBMARINES. The sole conse space expression calls for a node to be
created and assigned a gensym name. The node represents an element of
OWNINGS. The obj of this element is U. The agt is to be encoded by a
newly created, gensym-named node with an e arce to COUNTRIES.

Function LN2.SUB creates no structure itself but defines an LN2
subroutine for subsequent use. The example shown defines a subroutine
called "owns" that may be used to create instances of Ownings situations
in terms of the local variables (formal parameters) OWNER and OWNEE.
The remaining arguments to LN2.SUB are expressions to be evaluated when
the "owns" subroutine is  invoked. An invocation of the M"owns"
subroutine occurs in the conse of the last IMPLICATION. The delimiters
"M and ">" indicate that an LN2 subroutine is to be invoked. The first
argument within the delimiters is the subroutine name (which must have
been previously declared in a call to LN2.SUB) and the other arguments
are actual parameters. Calls to LN2 subroutines are designed to

resemble expressions of propositions in predicate calculus notation.

XI  IMPLEMENTATION

SHI's implementation of partitioned networks is written in
INTERLISP [Teitelman 1975] and makes extensive use of user data types.

Nodes, arcs, and spaces are each represented by a separate record type.

A space record is a collection of four pointers referencing the
list of nodes in the space, the list of ares, the property list, and the
‘node structure that encodes the space's node-like properties if it is a

:supernode. The latter field is NIL for spaces that are not supernodes.

A node record is a collection of six pointers referencing the
'incoming arcs, the outgoing arecs, the node label (if assigned), the
spaces upon which the node lies, the property 1list, and the associated

space if the node is part of a supernode complex.
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An arc record is a collection of five pointers referencing the arc
label, the "from" node, the "to" node, the spaces upon which the arc
lies, and the arc's property list.

The most recent versions of the net package, including one version
that maintains large nets on secondary storage, were programmed by
Jonathan Slocum, Ann Robinson, and Kurt Konolige. The largest
partitioned net created to date contains some USQ0 network structures
{nodes, arcs, and spaces) and was used in the PROSPECTOR rule-based
inference system. Models using in the neighborhood of 10000 structures

are under construction.

XII  CONCLUSION

This paper has outlined the basic concepts underlying the encoding
of knowledge in partitioned networks and has discussed structures used
for a variety of specialized applications. The ability of networks to
encode knowledge in a form convenient for a diversity of applications
enhances the value of networks as a medium for integrating many skills
in one coordinated system. Partitioning has increased the usability of
networks for those applications in which a subportion of a network is to

be treated collectively as a unit.
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